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THEORETICAL CALCULATIONS OF THE PRESSURES, FORCES, AND MOMENTS AT

SUPERSONIC SPEEDS DUE TO VARIOUS LATERAL MOTIONS ACTING

ON THIN ISOLATED VERTICAL TAILS ‘

By EENNBTH MARQOLIS and PEECYJ. Borwmrr

SUMMARY

veh@I poteniiab, pre8&uTedi.8tribuiion8, ad 8ttiity de-
riuatwe8 are denkd by u-se of 8uper80nic ht.earized theory for
jamdti of thin tioluted vertical tui.b performing 8teady rolling,
8teady yawing, and corutati-laienzliwcekmiion motion-s. Ver-
tical-tail famiLti8 (half-d.%a and reahmgw?ar plun form) are
considered for a broad Mach number range. Abo comidered
are the mrti.ed tail with arbitrary sweepback and taper ratio at
Mach numbem for which both th liuding edge and trading edge
of the tai? are &uper80nic and the triangu.hr verti.ca? tad &h a
WLhsonh hui?ing edge and a 8uper8cm& trading edge. For pwr-
poses of co7npI?&me88,andogwe expre8&ion8 and &riva&%esfor
8ide#lip motion obtained @ma&y from other 8ourixx are
included.

Ecpre+wiom for potentiA, prewnwee, and 8taMity daivatitw
are talnduted. Ourves which determhu the 8tab&?ityderivatwe8
for half-delta and rectanguiiw tai?a are pre+wnted which enuble
rapid e8tin@i0n of their va.?ue8for gioen valw-a of aspect ratw
and Mach number. In order to indicate tb importance of end-
plate e$ect8, 8everal compari80n-9 are shown of the o?erioedre4wl.t8
(based on a zero-end-plate analys%) with tho8e corresponding -to
a complete-imd-plale anulyti.

INTRODUCTION

Detailed knowledge of the loading, forces, and moments
acting on vertical tails undergoing various maneuvers is a
nmessary prerequisite for determiningg the lateral dynamic
behavior of aircraft. The information presently available is,
in many instances, insufficient to enable reliable estimates to
bo made of the vertieal-tail contributions to airplane stabil-
ity at supersonic speeds. tilde from calculations for sevaral
‘%lendor” configurations, theoretical results to date have
bem concerned, for the most part, with tail cm@urationE
either subject to a constant sideslip attitude or performing
a steady rolling motion (see refs. 1 ta 13).

For the sideslip motion, the effects of Mach number and
aspect ratio on the aerodynamic loads of a number of tail
configurations with both one and two planw of cross-sec-
tional symmetry have already been investigated extensively.
The same effects on tail arrangements in a rolling motion

U@cmdes NAOA Twhnhd Nota 3379by KemetbMm%olhKW andS240by Peres

have also received considerable attention which has mainly
been directed toward tails with two planes of symmetrysuoh
as cruciform arrangements. Additional theoretical analysis
devoted to the evaluation of the Mach number and aspecb
ratio effects on the forcw and moments acting on tail sys-
tems in roll with one plane of cross-sectional symmetry is
required. Tail arrangements performing a steady yawing
motion or a constant-lateral-accelemtion motion have re-
ceived little attention to date in the literature. Yet the
forces and moments produced by these motions are by no
means negligible, and some indication of their magnitudes
is necessary, particularly at supersonic speeds, in order to
evaluate their relative importance on lateral stability.

The prima~ purpose of this report is to present the results
of a theoretical investigation to determine at supersonic
speeds the pressures, fore+ and moments acting on several
families of thin isolated vertical tails subject to various
lateral disturbances. Three motions are treated: steady roll-
ing, steady yawing, and constant lateral acceleration. A
fourth motion, namely, constant sideslip, although analyzed
previously, is included for purposes of completeness. The
basic plan forms considered are: (a) half-delta tail with
either a subsonic or supersonic leading edge, (b) rectangular
tail, (c) general sweptback tail of arbitrary taper ratio with
supersonic leading and trailing edges, and (d) triangular tail
with a subsonic leading edge and a supersonic trailing edge.
The halfdelta and rectangular vertical tails are analyzed in
detail in that forces and moments (expressed in the form of
stability derivatives) and their variations with Mach nnm-
ber and aspect ratio are presented in a series of simple charts.
Useful expressions and formulas are included for the other
plan forms which enable similar calculations to be tied out.

A secondary objective, in view of the geometxic nonplanar
characteristics of tail arrangements, is to consider the e@i-
mation of the mutual aerodynamic interference that exists
between the vertical and horizontal tails. In order to gain
some insight into the possible effects of such interference,
several of the derived resnlta are compared with correspond-
ing ealcuhkions based on a complete-end-plate analysis. (A
complete-end-plate analysis implies that the horizontal tail
acts as a perfect reflection plane.)

Bobbi& 1954.
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SYMBOLS

rectangular coordinates used in analysis (see
fig. 2(a))

rectangular coordinates of doublet

longitudinal and vertical distances, respectively,
that origin is displaced relative to tail apex
(see fig. 2(c))

perturbation velocities in z- and ydirections,
respectively

free-stream or flight velocity (see fig. 2)
NIach number, V/Speed of sound

Qnb@ar velocities about z- and z-ayes, respec-
tively (see fig. 2)

angle of sideslip (see table I)
rate of change of P with time, d/3/dt
time
density of air

ho-stream dynamic pressure, ~ pv’

coefficient of pressure difference between op-
posite sides of tail surface due to particular
motion under consideration, positive in sense
of positive side force (see fig. 2)

cotitant determiningg degree of homogeneity of
quasiumical velocity field

perturbation velocity potential due to particu-
lar motion under consideration evaluated on
positive y-side of tail surface (see fig. 2)

dii7erence in perturbation velocity potential
between two sides of tail surface,
q?(z,o+,z)— $c@,o-jz)

potential of supersonic doublet distribution
potential of line of doublets
doublet-strength function
linedoubletdistribution function
root chord of vertical tail
span of vertical tail
mea of vertical tail
taper ratio of vertical tail, Tip chord/Root

chord
aspect ratio of vertical tail, b~JS
slope of leading edge of tail; cotangent of

sweepback angle of leading edge (see fig. 1)

~=1–dH%7
Bm

*(Bm)=m–m=a
E’ (k)

E’(k) complete elliptic integral of second liiud with

modulus ~~

J
TJ2

~h-(1-H) sid n dn
o

K’ (k) complete elliptic integral of fist kind with

modulus ~~,

J
T/’ dn

0 J1–(1–H) sin’n

‘r,u, CO arbitrary constants (G=uBm)

~~[W+k’)K’(k)+( l–4c’+k’)E’(k)]
‘“’=– (z–.-k’) (1–2k’)E’(k)’+k’( l+k’)K’(k)E’(k) –k’K’(k)2

(l+@)’’’[(l +k’)E’(k) –2k’K’(k)]
“’=- 2[(2-k’)(1 –2&b??’(k)’+1#(1 +k’)K’(k)E’(k)-k’K’ (k)’1

k~l+k’[(l+&)E’(k) -2/PK’(k)]
‘:= – (2–k’) (1–2k’)E’(k)’+k’(1 +k’).K’(k)E’ (k) –k’K’(k)’

(l+k’)3’2[2(1-k’+ k4)E’(k) –k’(l +k’)K’(k)]
“’=2k[(2–k’)(1 –2k’)E’(k)’+k’(1 +k’)K’ (k)_E’(k) –k’K’ (k)’1

E iniinitesimdly small quantity

Z—11’zu

7=-42-W!%’)

70
1—B’ue

expression for ~ indicated at y=O,
J=F7jm’

$,V variables used for integrating purposea
Y side force
iv yawing moment
L’ rolling moment
c. side-force coefficient, Y/@
c. yawing-moment coefficient, iV/@b
c, rolling-moment coefficient, L’/qSb
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Subscripts:

P refem to rolling condition
r refers to yawing condition
r= 1 refers to unit-yawing condition

B refers to sideslip condition
~= 1 refers to unit-sideslip condition

P refers to constant-lateral-acceleration condition
w based on wing dimensions
1,2 components used for ~ derivatives

Abbreviations:

L. E. leading edge
T, E. trailing edge

All rmglea are measured in radians.

ANALYSIS

SCOPE

The vertical-tail plan forms considered herein are shown
in figure 1. The leading edge has arbitr~ sweepback and
the trailing edge may be either sweptback or sweptforward.
The permissible ranges of sweep, aspect ratio, and taper
ratio for the supersonic-leading-edge configurations are
determined by the conditions (indicated in fig. 1) that both
the leading edges and trailing edges remain supersonic and
tlmt the Mach line emanat~a horn the leading edge of the
root chord does not intersect the tip chord. Also, the tip
chord must be parallel to the root chord. For the subsonic
leading-edge configurations, only the case of zero taper ratio
is considered and the restriction to supemonic hailing edge
is imposed.

E.spressions based on linearized supersonic-flow theory
are obtained for the perturbation velocity potentials and
pressure distributions due to steady rolling, steady yawing,
and constant lateral acceleration. For purposes of complete-
ness, anrdogous results for constant sideslip motion obtain-
able, in general, from references 9 and 10 are included.
The expressions, which are derived for the condition of zero
geometric angle of attack and which are valid for low rates
of anguhw velocities, small sidelip angles, and small angle-
of-sideslip variition with time, are tabulated so that they
may be utilized conveniently in the calculation of load
distributions rmd the corresponding forces and moments.

Two important members of the family of vertical-tail
plan forms are considered in detail. These are the rectangu-
lar tail and the triangular tail with an unswept trailing edge,
that is, the hti-delta tail. For these tails, closed-form
expressions are derived for the side force, yawing moment,
and rolling moment due to each motion. The resulting
formulas are expressed in the form of stability derivatives
and are tabulated; simple charts are presented which permit
rapid estimation of the 12 stability derivative for given
vdues of aspect ratio and Mach number. Tabulation

of the derivatives for subsonic-edge trianghr tails with
trailing-edge sweep are also presented.

Three systems of body axes are employed in the present
report. For plan-form integrations and in the derivation
and presentation of velocity potentials and pressures, the
conventional analysis system shown in figure 2 (a) is utilized.
In order to maintain the usual stability system of positive
forces and moments, the axes systems shown in figures 2
(b) and 2 (c) are used in formulating the stabili~ derivatives.
A table of transformation formulas is provided which enables
the stability derivatives, presented herein with reference to
a center of gravity (origin) located at the leading edge of the
root chord (fig. 2(b)), to be obtained with reference to an ‘
arbitrary center-of-gravity lomtion (fig. 2 (c)).

BASICCONSIDERATIONS

The calculation of forces acting on the vertical tail essen-
tially requires a knowledge of the distribution of the pressure
difference between the two sides of the tail surface. This
pressure-difference distribution is expressible in terms of the
perturbation-velocity-potential d.iiference or “potential jump
across the surface” Aq by means of the linearized relationship

(1)

Inasmuch as for the present investigation thin isolated tail
surfaces are considered and thus no induced effects are
present from any neighboring surface, the perturbation
velocity potentials on the two sides of the tail are equal in
magnitude but are of opposite sign. Equation (1) may then
beremittenin terms of the perturbation velocity potential p as
follows:

(q

where q is evaluated on the positive y-side of the tail surface.
The basic problem, then, is to find for each motion under

consideration the perturbation-velocity-potential function
p for the various tail regional areas formed either by plan-
form or plan-form and Mach line boundaries. (See, for
example, the sketch given in table I.)

For time-independent motions, such as steady rolling,
steady yawing, and constant sideslip, the potential functions
are” of course independent of time (i. e., the last term in
eqs. (1) and (2) vanishes) and may be determined for the
subsonic-leading-edge cases by the doubletdistribution
method of references 14 and 15. The details of the method
and its application are given in the appendixes. The super-
sonic-leading edge ccdgumtions are analyzed by the well-
known source-distribution method utilizing the area-can-
cellation-Mach line reflection technique of reference 16.
The mathematical details are not presented herein, because
it is felt that previous papers dealing with wing problems
(e. g., refs. 17 to 20) have applied the basic method in sufli-
cient detail. The main difhwence to be noted is that the
root chord of the isolakd vertical tail is, in effect, another
free subsonic edge similar to the tip chord and must be
treated accordingly. Actually, tail regions I and III (refer
to the sketch in table I) are not affected by the additional

.
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tip, and wing results in these regions for constant angle
of attack (ref. 20), steady rolling (ref. 20), and steady pitch-
ing (ref. 18) are applicable to constant sideslip, steady
rolling, and steady yawing motions, respectively, for the
verticid tail, provided appropriate changes in coordinates
are introduced and the proper sign convention is maintained.

The timedependent motion considered in the present
report, that is, constant lateral acceleration, can be analyzed
in a manner analogous to that used for a wing surface under-
going constant vertical acceleration (e. g., refs. 21 to 23).
By following this procedure, the basic expressions for the
perturbation veloci~ potential and pressure coefficient
(evaluated at time t=O) may be derived as follows:

(3)‘=-’E-(+%d
Ap

[( (9
+% P&lp M’ +P),-l+T ‘g ~., v—.. — —. 1 (4)

!l~

Equations (3) and (4) may be ~educed directly from equa-
tions (1) and (2) of reference 23, provided the corresponding
tail motion is substituted for each wing motion and, further,
that care is exercised in preserving the conventional system.
of positive forces and moments. The choice of time t= O in
equation (4) was made for purposes of convenience and
simplicity, inasmuch as the pressure due to constant side&p
is eliminated, nnd thus only the increment in pressure due
to time rate of change of sidedip, that is, ~, remains.

The right-hand sides of equations (3) and (4) are composed
of terms invol~ steady or time-independent motions, in
particular, the motions previously discussed in this section.
Thus, once the potentials and pressures are determined for
steady yawing and constant sideslip, corresponding ex-
pressions may be obtained for constant lateral acceleration
by use of equations (3) and (4).

Derivations of the potentials and pressures for the various
regions of the tail plan forms under consideration have been
carried out for each motion by using the methods and tech-
niques discussed. Tabulations of the potential and prewrre-
dist.ribution functions are given in tables I and H for con-
stant sideslip, in tables IIt and ~ for steady rolling, in
tables V and VI for steady yawing, and in tables W and
V131 for constant lateral acceleration.

The forces and moments acting on the vertical tail due to
each motion may be obtained by plan-form integrations of
the appropriatee potential and pressure functions and may
be given as follows (the center of gravity is assumed to be at
the leading edge of the root section):

SSY=q “p ‘“~.$hdz
Rcmt L. E.

SSN=–q “p ‘.~$zdxdz
Root L.E.

TIP

SS
T.E. @

,L’=q zdxdz
Rot L. E. T

(5)

(6)

m

For steady motions; $=+ ~ and thus the first integration

with respect to z in equations ~(5) and (7) yields p; hence,
equations (5) and (7), when applied to steady motions, reduce

to essentially a single integration
function.

involving the potential

The nondimensional force and moment coefficients *and
corresponding stability derivatives are directly obtainable
from the definitions given in the list of symbols. I?or
example,

‘l%(YL
~v J r-lo

Inasmuch as the various pressure coefficients are linear with
reference to their respective angular velociticw, attitude, or
acceleration (i. e., linear in p, r, P, or ~), the partial clerivn-

tive in the preceding example may be replaced by &v

and the derivative Q* is then expressed as

TIP T.E. AP
c.r=–~

J’s
Zdxd.z

7
(8)

S&+ Root L.E.

Corresponding expressions for the 11 other derivatives G.,

obtained in an analogous reamer. ‘ “
In the present report, the trianguhr vertical tail with

unswept trailing edge (half-delta) and the rectangular ver-
tical tail have been analyzed in detail. The remdts obtained
upon performing the plan-form integrations and other
mathematical operations indicated in the previous discussion
are tabulated in table IX. Table X presents similar results
for the subsonicedge triangular tails with trailing-edge sweep.
For convenience, a table of transformation fornmlns is pre-
sented (table XI) which enables the derived results for the
stability derivativ~ (tables IX and X) to be exTressed with
respect to an arbitrary center-of-gravity location.

Values of the elliptic-function parameters appearing in the
subsonicddge formulas are presented graphically in figure 3.

COMPUTATIONAL RESULTS AND DISCUSSION

The formulas for the stability derivatives given in tablm
JX and X are seen to be functions of the tail-nspect ratio A
and the Mach number parameter B=~M~ Use of the
combined parameter AB for the abscissa variable and appro-
priate choice of derivative parameters for the ordinates allow
the analytical results for most of the stability derivatives to
be expresed graphically by means of a single simple curve;
the stability derivatives due to &motion require two curves.
Figures 4 to 9 present the results for the hdfdelta tail rmcl
figures 10 to 14 present the analogous results for the rec-
tangular tail. The lower limit AB= I for the rectangular
vertical tail corresponds to the condition where the Mach
line from the leading edge of the root chord intersects the
trailing edge of the tip chord. Values of the derivativea for
the situation where the Mach line from the leading edge of
the root chord intersects the tip chord, that is, values of
A.B<l, cannot, in general, be obtained easily becauso of Lhe
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fact that the calculation involves the consideration of inter-
acting external flow fields. The lower limit A_B= 1 in this
case is not very restrictive except for very low aspect ratios
at low supewnic Mach numbem.

In considering the curves given in figures 4 to 14, the fol-
. lowing facts should be kept in mind: (a) The results are for

a completely isolated vertical tail, (b) the center+f-gravity
location is assumed to be at the tail apex, and (c) parameters
used for nondimensionalizing purposes are the area and span
of the vertical tail. For other center-of-gravity locations,
analogous curves may be drawn by use of the presented data
and the axes-transformation formulas given in table XL

Thus far, only the isolated vertical tail has been consid-
ered, that is, the zero-end-plate solution. For comparison
purposes, results for several of tie derivativ~ b~ed on a
complete-end-plate analysis have been obtained and are
presented in figures 15 and 16. The compmkons me shown
for the side-force and yawing-moment derivatives due to
constant sideslip, steady yawing, and constant lateral accel-
eration. The complete-end-plate results for these tail de-
rivatives are obtainable from stability derivatives previously
reported for symmetrical wings (refs. 18, 20, 23, and 24),
provided modifications are introduced to account for (a)
changes in nondimensionalizing parametem, (b) correspond-
ence of wing and vertical-tail motions, and (c) preservation
of sign convention for positive sense of motion, moments,
nnd so forth. The transformations of symmetrical-wing
derivatives into complete-end-plate derivatives for vertical
tails having the same plan-form geometry as the half-wing
may be summarized as follows:

C,b= — 1X (Expression for CL= with wing aspect ratio re-
placed by 2A.)

c,y~ l(~:;):’X (EWression for C&=with wing aspect

ratio replaced by 2A)

2 1+X+X*
C“=m (l+A)

~ X (Expression for C~c with wing aspect

ratio replaced by 2A)

8 (1+ A+A2)2
‘“’=mz (1+X)4

X (Expression for C., with wing aspect

ratio replace’d by 2A)

cY$==-& 1(;::):2X (Expression for (& with wing aspect

ratio repla&~ by 2A)

8 (l+ A+k2)2——
%= 9A~ [l+k)4

X @xpr&ion for GLi with wing

aspect ratio replaced by 2A)

where CL=, Cm., CLQ, C.q, CL;, and C.k are conventionally
defined wing derivatives (see, for example, ref. 23). Figures
16 and 16 indicate that for a given aspect ratio the effect of
an end plate decreases with increasing Mach number and
that for a given Mach number the effect of an end plate
decreases with increasing aspect ratio. Although these con-
clusions apply specifically to those derivatives presented, it
is felt that similar evidence would be found for the other
derivatives as well. The percentage differences between
zero- and complete-end-plate results vary of counse with
cent or-of-gravity location, as well as with Mach number and

aspect ratio, but in general are not too large for the side-force
and yawing-moment derivatives considered except at the
lower vahm of AB.

The stability derivatives as presented herein have been
made nondimensional with respect to vertical-tail parameters
such as tail span b, tail area i3, and the angles pb/V, rb/V,
and jb/V. The magnitudes of the derivatives may, there-
fore, appear to be quite large with respect to the expected
tail contributions to the derivatives for a complete airplane.
The following factors should be used in converting the pre-
sented analytical and numerical results to corresponding
derivatives (denoted in the following relationships by sub-
script W) based on wing area J%, wing span b., ~d angles
pbJ2V, rbJ2V, and 4bJ2V:

=22 ~ 2()(S. b. )
Crop,Clp,cm,,cl,, C=b,Clb

CONCLUDING REMARKS

Velocity potentials, pressure distributions, and stability
derivatives have been derived by use of supersonic linearized
theory for families of thin isolated vertical tails performing
steady rolling, steady yawing, and constant-lateral-accelera-
t.icmmotions. Vertical-tail families (half-delta and rectanguhw
plan forms) are considered for a broad Mach number range.
Also considered are the vertical tail with arbitrary sweepback
and taper ratio at Mach numbers for which both the leading
edge and trailing edge of the tail are supersonic and the
triangular vertical tail with a subsonic leading edge and a
supersonic trailing edge. For purpose9 of completenm,
analogous expressions and derivativea for sideslip motion
obtained primarily from other source-s am included.

The effects of a complete end plate on several of the side-
force and yawing-moment derivatives have been considered,
and it appears that only for relatively small values of the
aspect-ratio-Mach number parameter A.~M~ do the
complete+nd-plate and zero-end-plate values difFer signi6-
cantly enough to warrant further study of tits-end-plate
corrections.

An additional point of interest pertinent to the present
investigation is that the results obtained for the yawing-
moment derivatives due to steady yawing and constant
lateral acceleration C% and Cs~ maybe used to approximate

the aerodynamic damping of the lateral oscillation in yaw to
the first order in frequency. This approximation to the
lateral damping is given by the expression C=,— CnAand can

be rapidly calculated from the curves and formulm given
herein.

LANGLEY AERONAUTICALLABORATORY,
NATIONAL ADVISORY COW~EE FOR AERONAUTICS,

LANGLEY FIELD, VA., Murch 6, 1966’.



390 REPORT 1268—NATIONAL ADVISORY COMEUT’TEE

.

FOR ADRONA”bTICS

APPENDIX A

DE’I’ERMINATION OF PRESSURE-DISTRIBUTION E~RESSIONS FOR A SUBSONIC-EDGE TAIL UNDERGOING YAWING AND
ROLLING MOTIONS

.
A method for solving supeIsonicAow boundary-value

problems governed by the classical, linearized, partial-
diilerentird equation

(Al)

has been developed in reference 14 and an application to
rolling and pitching triangular wings is given in reference 15.
This method allows the prediction of the disturbance-
potentird function ~, and hence the pressure distribution, for
planar lifting surfaces. The analysis given in reference 15 is
briefly summarized herein and is applied to the determination
of the premme distributions on a triangular-vertical-tail
surface (fig. 2) performing rolling and yawing motions.
(Ymving in the zz-plane is analogous to pitching in the zy-
plane.)

DETERNJNATION OF THE FORM OF THE VELOCITY POTENTIAL

As is well-known, the potentials of both the supersonic
source and the supersonic doublet and their distributions
represent solutions of equation (Al). For the determination
of the potentials and pressure distributions of lifting surfaces
with subsonic leading edges, a distribution of doublets that
uniquely satisfiea the prescribed boundary conditions is
required. The boundary conditions on the vertical tail
for the motions to be considered herein axe az follows:
On the rolling vertical tail,

v=p2=2p~=~e (A2)

and on the yawing vertical tail,

0= —~ (A3)

In addition, the following relations must~be valid on the
surfaces of the tail:
For the rolling motion,

()
a!

ZD——
be ‘p

(A4)

(),
z:

a~ ‘0
(A5)

aad for the yawing motion,

()
a?

z,
—=0

ae (A6)

()
*Z

Z*
—=0

a~ (A7)

It is also necessary that the pressure along the strwunwh
edge be zero.

The potential in space produced by a distribution of
doublets, for example, in the zz-plane, with tho doublet
axes normal to the plane is

where the area 8 is the region of the xz-plane intercop ted
by the forecone from the field point (x, y, z).

The potential on tbe surface carrying the doublet distribu-
tion is given by

As stated in reference 15, this surface potential is directly
proportional to the doublet-strength function A.(z,z); that is,

@D(@y-+O=+~_L’@,Z) (A9)

‘The surface-pressure velocity U(Z,Z) then becomes

aqD(z,z),.a= * ~2L4(w)
‘U(Z,Z)V.+O=

ax” b
(A1o)

and the linearized pressure coefficient

Ap 4U(X,Z)V.+0—.
!Z v (Al 1)

may be written as

(A12)

The problem to be considered in this appendk is ono in
which the sidewash on the surface is prescribed (see oqs.
(A2) and (A3)) and the surface velocity potential has to bo
determined. The doublet-strength function A(z,z) then is
an unlmown and the determination of this quantity requires
in general the solution of an integral equation. In some
cases the general form of the surface-potential function
A(z,z) is known or can be obtained by inverting an integral
equation. The problem then resolves simply into an evalu-
ation of the arbitrary constants of the general solution by
making use of the prescribed boundary conditions.

Brow-n and Adams in their analysis of rolling and pitching
triangular wings with subsonic leading edges (ref. 15) wem
able to determine the function A (z,z) by utilizing the concept
that the conical properties of the produced flow gave rise to
potentials and pressures in the crosflow planes that were
similar in form to the potentials and prewures acting on flat
finite segments in a two-dimensional flow; these segments
correspond to a section of the wing in any croasflow plane.
This remarkable connection between linearized supersonic
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conical flow and incompressible two-dimensional flow is
discussed by Busemmm in reference 25.

A more general and rigorous approach to obtain the
doublet-strength function may be formulated from an
analysis presented in a later paper by Lomax and Heaslet
(ref. 26) dealing also with conical and the so-called quasi-
conical problems. In this analysis a general surfacf3presmre-
coefficient e.spression has been determined for planar lifting
surfaces with prescribed boundary conditions of the form

()Z@$g :

This expression is

APz’~055 b#i—. —
!2 B t-o ~(m–8)@-ml)

(A13)

(A14)

where b~are constants, 0=$ Kis determined by the boundary-

condition equation (eq. (A13)), and m and ml are the tan-
gents of the apex angles of the two panels of the lifting sur-
face, When ml=m,, the lifting surface is symmetrical about
the common root chord of the two panels, and when ml #m,
the lifting surface is asymmetrical about this chord. From
equations (A12), (A14), and (A9) the form of A(z,z) or,
synonymously, the form of the surface potential may be
obtained by a simple integration. It shotid be mention~
at t.h.ispoint that reference 26 presents a method for deriving
the arbitrary constants bi in the pressure coefficient (eq.
(A14)). This method is related to that of reference 15
which concerns itself with obtaining the arbitrary constants
in the velocity potential.

By application of equation (A14) to the boundary problem
of the triangular vertical tail (ml= O) and by noting from the
prescribed boundary conditions (see eqs. (A2) and (A3)) that
K= 1, the pressure coefficient for both the yawing and rolling
motions is

Ap X bo+b,e+b#’—=—
~B-

(A15)

The constant bOin thisexpression must be set equal to zero
in order to satisfy the condition that along the streamwise
edge the pressure must be z6ro.

The velocity potential on the vertical-tail surface is easily
obtainable from the pressure expression by the formula

V’AP

J —&~=x ~.~.q
and has been found to be

()
~=+ E

z
(A16)

where

f (:)=f(e) = (~+~) 3= (A17)

The arbitmq constants T and Q in the so-called distribution
function j(0) are, in terms of b, and b~,

V b,——
‘27rB 3mt

By relating equation (A16) to equation
strength function A (z,z) is seen to be

()&-c,z) =&f :

(A9), the doublet-

(A18)

A comparison of the potential given by equations (A16)
and (A17) and the potential obtained for the slender, rolling,
vertical tail reported in reference 5 shows, as expected, that
both are of the same form.

EVALUATION OF TEE CONSTANTS r AND m

The constants T and u in the expressions for the velocity
potential given by equations (A16) and (A17) are still to be
determined. As indicated previously, the expression for
the pressure coefficient, and hence the velocity potential, can
be determined completely through an application of the pro-
cedures developed in reference 26; however, many of the
integrations and integrating procedures required in the
method in reference 15 were already known to the junior
author at the inception of this project and, for this reason,
the analysis herein to detemnine the constants ~ and Q
closely parallels the procedures discussed in reference 15.

The determination of the constants ~ and a depends upon
satisfying the baundary conditions associated with the verti-
cal tail for the rolling and yawing motions. These boundary
conditions are given by equations (A2) to (A7). The needed
expressions for the prescribed velocities and their derivatives
with respect to o in terms of the distribution function f(a)

are derived in appendix B.
For the rolling motion the constants ~ and u may be

obtained by replacing f(a) by its equivalent (eq. (A17)) in

b(o’x) and thenthe equations given in appendix B for v/x and ~

applying the boundary conditions given by equations (A2)
and (A4). When the integrations have been performed,
the resulting equations may be solved simultaneously for
rP and UP. The yawing constants are obtained in a like
manner with equations (A3) and (A6) replacing equations
(A2) and (A4), respectively.

a(v/z)
In the calculation of the quantities @c and ~, any

value of Omay be considered. It is advantageous for intw
gration purposes to let this value of o be zero. However,
since one of the limits of integration is zero and since in
several of the integmnds a singular point exists at 0= u=O, the
integrations in which these singuhwities occur must be per-
formed for o arbitrary before o can be set equal to zero.
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Substituting equation (A17) into equation (B4) gives, for o equal to zero,

o 1 ‘“ —3 (rBu+ul?m) ~Ba(Bm—Ba) tanh-l ~=+2 (TBu+ wBm) Ba(Bm—Ba)

n
;=B ~

(1–B’u’y~ (l-.-d@”)+

!%{!iiiW-I) (TBu+uBm) JBu(Bm–Bu) (1–B2d)JJGZW ~(Ba)+
(1 –BV)’(BU-BO)’

1

J
‘m (~Bu+~Bm) ~Ba(Bm–Bu) (1–11’d)’~m~ ~(Ba)_2(~B8+~Bm) ~BO(Bm–BO) 1–BY

~- I@+,) (1–B’u’)2(Bu-Bo)2 B’. m} “1’)

Carrying out the integrations in equation (A19) yields

v —r

~=BJw(l—k’)2
{K’(k) [2F,+W(l+k’)]-E’( k)[.k(l+k’)-z(l-4 k’+k4)]} (A20)

where

~= 1—-J=
Bm

and
2k

‘=”Bm=” l+k’

These integrations were accomplished with the aid of the tables in references 27 and 28 and are
Substituting the distribution function into equation (B5) results in, for o approaching zero,

(A21)

discussed in appendix C.

w=
S[ O-m‘m 3Bu(rBu+&m) ~~(.jBBmx~) tmh-’J__3Ba(TBa+ aBm) Bu(Bm–Bu) d(Ba) +

ae ~

n’(B”)+J:6)r(’:=)::;:B”)-2 (rBa+uBm) ~Bu(Bm–Bu) 1–B’L?’

(Ba–Be)3

(~Bu+wBm) J.B~+2(rBu+&m) ~Bu(Bm–Ba) 1–B%’ ~(Ba) _

J=ff (1–BW)(BU-Be) (Bu–Bo)3 TI

2BO(rBi3+c&m) ~BO(BO–Bm) _2[–4B’0’r+BOBm (3r-2w)+&%’l ~~’
Be~~p Be JBf?(BO-Bm) })

(A22)

By performing the integrations in equation (A22), the following expression is obtained:

Z)(v/z) _

~o &TL’y
[k%’(k) (7+,F+2Zk) +E’(k) (2dc’-2T-ZW--2WcW)])] (A23)

Consider the rolling case for which T=TP and co=aP.
a(O/x)

Also from equations (A2) and (A4), for 0=0, v/z=O and ~=y.

Solving equations (A20) and (A23) for Tp and WP,with ti=BmuP=~PwP, gives

–pm [k’(l+k’).K’(k)+ (1–4k’+k4)E’(k)]
‘p= TI—kw(k)’+k’(l+ k’)K’(k)E’(k) + (2—k’) (1 —2k’)E’(k)’l

p(l+k’)3fl[2kW(k) – (l+k’)E’(k)]
‘p=2r[–kW(lc)2+ lP(l+k’)K’(k)E’(k)+ (2–k’) (1–2k’)E’(k)q

(A24)

(Am)



THEORETICAIJ AERODYNAMICS OF THIN ISOIM?ED VERTICAL TAILS AT SUPERSONIC SPEEDS 393

a(dx)r 0, ~~pectivel~. SolvingFor the yawing case T= T,, G=~P W, and, from equations (A3) and (A6) :=–r and ~=

equations (A20) and (A23] sinndtaneously after making these substitutions yields

Bdc41+kq2k?K’(lc) – (1 +P)E’(IC)]
“=~K’(k)’+kql+ld)K’( @E’(lc)+ (2–k9(l-12p)17’ (k)q (A26)

–Br(l+P)3qP(l+P)K’ (1%)-2(1 -P+ F) E’(k)]
“=2 Tk[-kw(k)’+P(l+ H)K’(k) E’(k)+ (2–H) (1–2F)E’(k)q (A27)

It is convenient for plotting purposes and in expressing the aerodynamic coe5cients to make the following definitions:

, BT
Tr=rr —

u
1

(A93)

%=%1 :

J
so that ~,’ , a;, rp’, and UP’ are functions of the Bm only. The variations of these four paramei%rs with Bm are shown in
figure 3,

The velocity potentials for the rolling and yawing motions, completely d&ned by equations (A16) and (A17) and the
constrmts given in equations (A21), (A24), (A25), (A26), (A27), and (A28), may now be Written as

The pressure coefficients for the rolling and yawing motions found from equations (A29), (A30), (A1O), and (All) are

r’)A 2p rP’m@+3m%P’zz-2nw,’2

7 P=~ ~)
(A31)

and

()AP 2BT r,’m2+3m%r’xz-2mco,’9
T r=~ ~)

(A32)



—.—— .-— _ .

394 REPORT 1268—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

APPENDIX B

DEVELOPMENT OF EQUATIONS RELATING THE u-VELOCITY TO THE DISTRIBUTION FUNCTION f (u) IN THE L/=O PLANE

Equation (A3) gives the expression for the velocity potential (everywhere in space) resulting from a distribution of
doublets in the zz-plane with the strength of each doublet in this distribution being governed by the doublet-strength function
A.(z,z). The derivative of this velocity potential with respect to any one of the coordinates z, y, or z will give the perturbation
velocity in that direction. Of primary interest herein is the v-velocity or the yderivative of this potential

(B1)

for points on the zz-plane. Brown and Adams in referauce 15 have constructed the velocity potential in space of a distribution
of doublets by the following approach. First, by using equations (AS) and (A18), the potantial of a line of doublets in the
u-plane at an angle tan-% to the z-axis is determined. This-potential is given by

lYy(&B’uz) ~ ~th_17 ‘-y( ) 2&y–@-B’(y’+z’)
“=- (l–B’o-’)’@

——
~–l + (l–B’&)’

(B2)

where
Z—B’UZ

~=JGZV~x’-B’(y’+ z’)

The veloci@ potential of a distribution of line doublets (i. e., a surface distribution) in the xz-planej on the vertical tail, With
strengths governed by the distribution function f(a) may then be written as

,= rf(.)d. (B3)
do

where t.an-%n is the apex angle of the vertical tail.
Substituting equation @2) into equation (333) and difFerentiating with respect to y yield the following equhtion for the

o-velocity M 13g/z approaches zero (see ref. 15):

H%{J [~‘o-’) Is’’(u) ~’@(l —B’uO)2 3B’(u) (1 —BW)coth-lYO+2Bj(a) 1—Ed
(l–lP&)’(BU-Be)’ – (1–B’C?)’~ T1(l–l?%’)’

d(Bu)+

Bm ~j(u)~~(l –B’uo)2 3Bj(a) (1–B’a@oth-’YO+2Bj(u) 1–l?%’

S[ n

2j(e)4m&
(1–BLJ’)’(B.-BO)2 (1–BV)’E d(Bu) – ,

}
(B4)B(@+c) (l–B’@)’

The singularity which occurs in the +1 term of equation (I32) when y is set equal to zero has been accounted for in equation

(B4).
By taking the first and sacond derivatives of equation (234) with respect to 0, two other useful relations are obtained.

They are given in the appendix of reference 15 as

%=%{J [ (1-lPoq5/2 - ,m,,-&&y ;

B@-C) 3B’~(u) coth–l To B’(3Bu+2B8+B8B’W(U) Belly(u) By(.)

~(Bu–Bo)2–_(l –B’03 (Bu–Bo) +

By(a) -1+@(u) 1 ‘&@ @a)_ 2B’ej(e) _4-Ji=z7F’F’(o)
,~(1 —B%’) (Bu—Bo) (Bu–-R9)3 F’e 1—B%’ }

(B5)

a’(o/x)
The factor multiplying the j“ (o) term of the expression for ~ as it appears in referauce 15 is slightly in error and has

been corrected in equation @6). (The symbols fl(~) and Y’(O) denote the tit and second derivatives, respectively, with
respect to 6.)

Considering equations (A5) and (A7), it is evident that equation (B6) must be zero for both the rolling and yawing cams.
This equation has already been satistled by j(~) (eq. (A17)), since equation (336) is in essence the integral equation which wcs
inverted to obtain the general pressure expression horn which f(tl) was derived (see ref. 26).
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APPENDIX c

INTEGRATIONS TO OBTAIN U/X

The e.spression for u/z is, for O approaching O (see eq. (A19)),

1W7+U~:$T~Bm-Bu) d(h)+

@

!5{%[+1“e-” (~Bc+&m) ~Ba(Bm–Ba) (1–B%9)2~&~ ~(Ba)+

(1–&’#)’(Bu-Bo)’

@b

J
B~ (,B.+coBm) @u(Bm-Bu) (1–~uW=@ ~(Ba) –

B(O+C) (1–lF&)’(Bu-Bo)’

@

1}2 (%O+&m) JBwh-Bd) JW#
B%

(cl)

This expression has been broken into parts as indioated by the circled numbers with the third part being broken into tmo
additional parts @a and @b because of the singularity in the integrand. Since @ and @ are elementary integrations similar
to those found in most integral tablea (see ref. 27), only @ will be dealt tith in detail. Performing the integrations @) and
@) and combining the results yield

w 2(~BO+~&(Bm-B6) _~[r(-7BOBm-2+10B6-Bm) +ti(4-7Bm+~6-B6Bm)]+

{ 8 <i=%(l –HI)

T[T(-2-10Br3+Bm -7B0 .Bm)+G(-4+U?8-7Bm +B0 Bin)]

8 ~~(1 +Bo) }
(C2)

where 6= uBm. The tit term of expression (C2) exactly cancels Q, so that the total of @, @, and @ for 0+0 is

[

T T(2+Bm)—G(4—7Bm) +T(—2+Bm)—Z(4+7Bm)
m - J- 1 (C3)

The following two integrals comprising @ remain to be evaluated:

-J
–3 ‘“ rBu~Bu(Bm–Bu) tanh-’~->

Bo (1–Bf#)Sfl d(Ba) (C4)

J
–3 ‘“; ~rBu(Bm–Bu) tanh-’~~2

70 (1–ll%q’fl
d(Bu) (C5)

It might be mentioned at this point that the integrands of expressions (C-4) and (C5) are finite and continuous over the interval
O to Bm and therefore must yield a iinite quantity -when integrated.

The integration of expression (C4) by parts givm

Integration of expression (C5) by parts gives
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Combining expressions (C6) and (C7) results in

ADVISORY COMMI’ITE.E FOR AERONAUTICS

(C8)

The fit term of equation (C8), w-hen evaluated at the limits, is either zero or iniinity. The integrand of @J, aa ma noted,
is finite over the whole interval; tharefore, infinities introduced as a result of parts integrations must, in the end, canccd
themselves.

The second term of equation (C8) is an elementary integration which when evaluated (with infinities neglected) yields

(T 2r+4Z—3TBm—5GBm —4Z—5uBm+2r+3rBm
@ -– .@HGrn )

(C9)

It is now convenient in integrating the third term in equation (C8) to introduce the variable substitution

so that Bm and k are related by

2k
‘m=l+h?

The third term in equation (C8) when transformed by equation (C1O) maybe written in the form

where

(Clo)

(011)

(C12)

I,= J
kT(I+k’)4~(+)dx
_, l–~

I,=– J ‘ k(7-+dF)F(#)d#
-t

I,=–
J :, (Ui?lj) ‘(*)d*

The integrals I,, 15, and 1, are elementary and may be determined by an integration by parts. If the multiplicative factor
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before the summation sign in equation (C12) is neglected until all the components are totaled, these three components become

1,+15+17=
—7k(l+l@T_w(l+l i?)T

1–P l–h?

Consider the integration required for 1*, that is,

Let #=k sin O; then expression (C14) becomes

J’12 ‘d-’[%m=wl’
-X12 ah —P sin%

It can be shown that

(C13)

(C14)

(C15)

(C16)

This fact allows expression (C15) to be written as

The last, two integrals of expression (C17) cancel each other and leave

(C18)

After the inverse hyperbolic tangent is replaced by its logarithmic equivalent and the additional variable transformation

1–P
‘i’ ‘=l—F sin~e (C19)

is introduced, expression (C18) becomes

LLi4°+%LJb9
It is now convenient to make the substitution

~=~-1~~
Expression (C20) then becomes

J(+ log.
)4

l+sin v dv
6 l—sin v sir? v— sin%

(C21)

which is exactly in the form of the fourth integration formula of table 335 in reference 28. This formula gives the value of
expression (C21) as u-K’(k). The integration of IJ may now be expressed as

I,= –lc(T+W) TK’ (k)

Using the same integrating procedure for I,, 14, tmd 10 as justoutlined for 1, and the integration formulas in tables 335 and
336 of reference 28 leads to

~,=[+(l+m +3 Wj[l+K’(k) –E’(k)]7
1–F
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[ 1I,+l,=mfi(l-kycm–(1–P),,-,; –z(l–/P)k%K’(k)–
W%@ +K’ (k) —E’ (k)]

1—P

where II
[ 1–(1–~),~~, ~ isa complete elliptic integral of the third kind With modulus ~= and parameter – (1–W).

s umming all the various parts contributing to the third term in equation (C8), including the common factor, gives the
following expression:

—1

{

~7k3+mz&+rK’ (k) [2F7+=P(1 +@]_
B(l–J?)FP l–l!?

TE’ (k) [2k%+Tk(l +&)]
1–P [ 1}+G%(l-F)II– (1–7F),1-P,; (C23)

The addition of expression (C23) to expression (C9) completely evaluates@ Expression (C3) gives the evaluation of @, @,
and @). Before writing the total integration, that is the sum of expressions (C23), (C9), and (C3), it is desirable to combine
expressions (C3) and (C9), which are functions of .&n, and transform them by equation (Cl 1) to functions of k. This pro-
cedure yields

T(W+ Tld)
(C24)

B-(1–F)

The total integration may now be Written in terms of the parameter k as

misl –F)’ { [
K’(k) [2k%+W(l+lP)]-E’ (k)[2k%+rk(l+lP) ]+ Wl-F)2 II –(1–W),l–k’,; 1} (C25)

By use of the process commonly known as interchanging the amplitude and parameter (see pp. 133 to 141 of ref. 2fI) the elliptic

“‘k) This operation permits \he exprcw-integral of the third kind appearing in equation (C25) is found to be equivalent to —.
Id

sion for u/x (eq. (C25)) to assume the form given in equation (A20).
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TABLE I

FORMULAS FOR POTENTIAL DISTRIBUTION DUE TO CONSTANT SIDEX3LD?

z

\

x

/’
(Tail is in zz-plane; 6 is positive; V m shown is in ~plane)

$&o+,z) I
I Vf?(mz– z)——_

>lm~ —1

–dZ–l [
mz-z@Bm— 1) +

(mz– z) Cos-1 —
11

m—z

?Jz?fa(z-llz) (Bin— 1)
I 1

vf3

{
(mz– z) Cos-’ -

—z+2(l+Bm)(z—b)+

III –Z-@X?l m—z

2~;(z–b) (Bm+l)[5(l+Bm) –m(z+Bz)
0

1- xv I z (11+111–I) I

1’ TTBH(Bm)4_”
v —

Bm
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TABLE II .

FORMULAS FOR PRESSUREDIFFERENCE COEFFICIENT DUE TO CONSTANT

/-y

(Tail is in zz-plane; @is positive; V as shown is in ~-plane)

/

/

w‘on (see
s etch) y (X,z)

I I I
1 II I

4flm ~orlm— z(2Bm— 1)—
x B%F-1 mx—z

I III I 4fim ml mz-z+2(l+Bm)(z-b)

‘~ m—z

IV z (11+111-l_)

2flzH(Bm)
v ‘B~S
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TABLE III

FORMULAS FOR POTENTIAL DISTRIBUTION DuE TO STEADY ROLLING

(Tail is in &z-plane; positive rolling)

Region
(see sketoh) p(z,o+,z)

I P
—z(~i—l)tfl { (mZ-z)[-m+z(2B%l- 1)]]

{
_~ m(4B?n-1) +@3%#-2BT?a-3) /7?az(z-Bz)_

II
x 3(B%P-1) Bm+ 1

(mZ-;)[mz-z(2B%#-1)] ~08_l mz+s(l-2Bm)
2(B%– l)ai~ m—z 1

P
{

(?nX-z)[-mZ+z(2B%X-1)] ~W_, m–z+2(l+Bm)(z–~)
—X(*2— l)m 2

—

111
m— z

(w–b)(~m–l)+(z– b)(3–2B%&-2Bm)- 6b(B%2-1)
3 d~]

}

Iv Z(II+III-1)

v p(.=’s+cd=’nu)~s
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TABLE IV

FORMULAS FOR PRESSURELDIFFERENCE COEFFICIENT DUE TO STEADY ROLLING

.

v

/

L

/“ /
-Y

(TrLilis in zz-plane; positive rolling)

/

T(sees “etch) yp (Z,z)

I I I 4pm@m*z- mz)———v(~f- 1):2

11 rv (E~’1) l’=–
4p——

[

m2(z—B%m) ~rl mz+z(l-2Bm)
(*,–1)3B m— z 1

4pm
{

(fiiz-m) cog-l ~—z+2(l+Bm)(z—~)_—

III
.V(mn?-lp mz-z

2Bm~(z-b)(Bm+l) @(l+13m) –nz(z+Bz)] }

I

IV z(II+ III– I)

2p ..’m&+ 3m@.’zz— 2?~’$
v F I/z(nU-z)
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FORMULAS FOR

z

TABLE V

POTENTIAL DISTRIBUTION DUE TO STEADY YAWIA’G

v o

(Tail ia in zz-plane; positive yawing)

(se!%%h) p(z,o+, z)

I
2(lPm~– l)m [@(–2m+~) +tiZ-~#m]

{
~ z(5B%i+4Bm-6) —B%z(2Bm+l)
‘B- 3(17m2-1) J%H+

11
(me– z) [mzlF+cc(m’EP-2)] CO*., m— z@Bm- 1)

2(mfP-1)3~ m—z 1

{
~ wc(5B%i-4Bm- 6)+ B%:(z-b)(2Bm-1) +Bmb(4+Bm)
r 3m(B%i– l)zfl

~l(z–b) (Bm+l)[b(l+Bm) –m(z+Bz)]+

III
(mc-z)[fi’(mz+z) –2mz] ~or, mz–z+2(l+Bm) (z–b)

2m(B%g– l)Jfl m— z 1

IV z(II+III-1)

v Br(.,’z+ UJW) ~/z(mx–z)
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TABLE VI

FORMULAS FOR PRESSUREDIFFERENCE COEFFICIENT DUE TO STEADY YAWING

v

z

r

/-Y
/

Re “on
f(sees etch)

I

II

III

IV

v I

(Tail is in zz-plane; positive yawing)

$ (X,2)

4r
{

[md@m~-2) + 21Cos+ ‘n=-fry:– 1) +TV(E%P— 1):~

2(B%?+B???– 1) J~l) (Z–BZ)
}

4r
{

[z.+mZ(B%n~-2)] CoS-’ ti-z+2(l+Bm)(z-b)+
TV(B%P— l):E mz— z

2(B%F-Bm-1) 4(z–b)(Bm+l)P(l +Bm) –m(z+llz)]
}

z(II+III-1)

2Br .,’m@ + 3m*w’zz—2nw’$——
v /z===)
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FORMULAS

v

TABLE VII

FOR POTENTIAL DISTRIBUTION DUE TO CONSTANT LATERAL ACCELERATION

/

/

-Y/

(Tail is in zz-plane; positive ~ in positive @irection)

r I I
Re on

T(see s etch) I $+,()+, 2!)

I I _j(mz-z)
[

~v_mW(mx-z)
~fi~ 2(B%’-1) 1

+—{
~~ 2tV+Wmx(4-Bm) –WmBz(2Bm+ 1) +—

II
T %1—1 [ 3B(B%#– 1) 1
[~orlmz—z(2Bm—1)

m—z 1[ Y%zY+’vl (=-’)} ‘

–~h&l
{ J~] [2tv+

iW(4+Bm) (b–w) + WBm(z–b) (2Bm– 1) +

III
3B(BW–1) 1

[

~orl mz-z+2(l+Bm) (z—b)
m—z 1[ ‘V+T4=3?I (w-z))

Iv 2(II+IH-~

v – Iw==3 { + (r+z+.;mz)+[vt-*] *]
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TARLE VIII

FORMULAS FOR PRESSUREDIFFERENCE COEFFICIENT DUE TO LATERAL ACCELERATION

Re ‘on
r(sees etch)

I

II

III

IV

v

(Tail is in zz-plane; positive j in positive @irection)

$(.,.)

4~(mz-z)(l+m~
v(B%#-1)3~

4b
{
&(l+m’)(mz-z) ~W, mz— z(2Bm —1)

~ml.~— — ‘- — +
TB Vda” m— z

[
2 l–

A1’(B%?+Bm-1)
*2–1 1“

zm(z—k?z) (Bin— 1)
}

4j EP(l+mt)(mz-z) ~W_,
{

mz-z+2(l+Bm)(z-b)+.——
ZIFV4BW— 1 *,_l — m—z

~ ~_ M(l%P-Bm-1)
[ fi2_l 1

~/(z–b)(Bm+ l)@(l+Bm)–m(z+Bz)]
}

2(11+ III– I)

2~ (IF+ l)i3(7r’m& + 3mYe:zz– 2*’z7
–Pv [ Jz(mz-z) –

(B+ l)zzH(Bm) _2H(Bm)~S
B~W Bm 1
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TABLE IX

STABILITY DERIVATIVES FOR HALF-DELTA AND RECTANGULAR ISOLATED VERTICAL TAILS

Half-delta tails
Derivative

(a)
Rectan lar tails

Af&l
0zAB<2 ABZ2

C7B –~ H(Bm)
-W% -lx%%) “

c “$ & H(Bm)
r

16 AB——
3AB AB+2 A(’-A)

cl~ –~ H(Bm) 4 AB+l
‘~ JAB(&+2) -f(’-A)

—

Cr, TAB _~ ~(AB+3) 2AB-1
~ (7.’+ 2%’) 3B (AB+2)~~

——
0

2(AB+3)
%

3AB–2
–* (~.’+ 2%’)

J@AB+2)3/’ 3AlBl

CL
(

TAB 5
)

2Az~+ 6AB+ 3 1+4AB–24AW+32AW
4B— ~ r=’+%’

–3B%LZB(AB+2)~ – 24A,1B4

Crr + (.:+2%,’) 8(2AB+ 5) 2(3AB– 1)
3~(AB+2)~ 3Al@

c –y (.,’+2.;) 4B(2AB + 5) _B(8AB–3)
‘r –[AB(All+2)p9 f3A3~

Clr
–(
TAB 6~ T,’+%’

)
23AW+ 9AB+ 5) 3AB– 1

4 3[AB(AB+2)Pfi 3A,~

Al%——
4 [

.++2#-$;$m)]_

Cyp
8 D–AB–I—— _2(&+2-3AB)

Ai3.
[

,/+.;-W&
1

3P ~~(AB+2)8 3A1B4

~

[
TB 3 8H(Bm) +
~ q .,’+ 3%’ — A*B

1 4 ~–AB–l 3&-8AB+6
%

[
3 ~ ~A$~(~+2)a

& ij T:+3W’— Izf::m)
1

&4JB4

ABx——
8 [

%:+; ./-W].

Clb
2 fl+AsBz+3AB+3 P+2–3AB

ABr @
—

=[
2U,J+; ~rl—W&Q

1

4&B4(&j+2)t 3AzB4

‘ Angular velocities and momenta measured about the system of body axea shown in figure 2 (b).

. . .

43687667—27
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TABLE X

STABILITY DERIVATIVES FOR TRIANGULAR ISOLATED VERTICAL TAILS
WITH SUBSONIC LEADING EDGE AND SUPERSONIC TRAILING EDGE

1

I Deriv#ive

Cyv

cm~

cl=

cl.,

c*,

cl,

CY5

C.j

Clj

For&a”

4-; ii%”)
7(3AB + 2Bm) H(Bm)

6Bm@%ZE

——P— H(Bm); 2Bm

[(zB4~ti T,’ ~+-J-- )(32Bm 16AB ‘*’ )
J--+~ -!-- –&2Bm 4AB 8A21P

(
Q--+ 1

‘ )H(Bm)l+32B%P Sll%~AB+83mA2~

[( )(;- “J &+& +“J &+&+gp)–

( Q-+ 1 3 )H(Bm)l32B%J 41Pm3AB+SBmAW

‘ Angular velocitim and moments measured about the system of body axea shown in 6
b Formulas valid for triangular plan forms with either mveptbaok or mveptforward tr=~jg!’~rovided the edge is superaonio.
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TABLE ~

TRANSFEROF-AXES FORMULAS

likability derivatives
in a body system of
axea with origin at
tail apex (see fig. 2
(b))

Crfl

c“$

cl#

CT.

c.=

cl=

CY,

c+

Clr

CYB

c-
V

cl~

‘“%w%fo;w%gi%ati:%ur%%
tan- q (positive forward) and zo
(pceitive downward) from the tail
apex (see fig. 2 (o))
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(o) “

E
(b)

/

44/
,/ //

A
‘ (a) Plan forms of ve.rtkal tails analyzed. (Trailing edge may be
either mveptbaok or mveptformwl provided it remains supemom-o.)

(b) Speoial cases (rectangular and half-delta verlioal tails) for vddch
stabl%ty-denvative curves are presented.

I
FIGUREI.—Tail plan forms and associated data

Iz

r, N

v

(o)

(b)

r, N

Tz

v

y, Y

T-
p,L’

x z~

0 “o~
T

r,N

(c)
z

(a) Body-ax@ system used for analysis. Free-stream velooity V.

(b) Principal body-axes system used for prmntation of stability

I
derivatives. Entire system moving with tight velooitv V,

(o) Same type of axea system as (b) with origin tranelatod.

FIGURE2.-Syetema of body axea. Positive direotione of axes, foroes,
and moments indicated by arrows.
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-.52
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Bm

FIQUIi~ 3.—Variation of the parameters ~, UP’, Bnti,’, .=’ and 7,’ with Bm.
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Fmum 5.—Curves for determining the stabfity derivatives due to s~dy ~~6 Cr=, C.d and Cl= for isolated half-delta
tives based on vertical-tail parametim b, S, and angle Pb/V;principal body-asea system with origin at leading edge

vertioal tails. Denva-
of root seotion.
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~mrRE6.-CnrveE for determiningg the stability derivatives due to steady yawing C=,, C=,, and Cl, for isolated half-delta vertioal tails. Dcmivn-
tivea based on vertioal-tail parameters b, S, and angle rb/V;principal body-axes system with origin at leading edge of root seotion.
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FIGURES.+urvea for determidng the stability derivative due to constant lateraf acceleration Cxi for isolated half-delta vertioal tails. Deriva-

tive based on vertical-ti parametem b, S, and angle fib/V; principal body-axes system with origin at leading edge of root seotion,
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Derivative baaed on vertical-tail parameters b and S; principal body-axes system with origin at leading edge of root seotion.
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FIGURE Il.—Curves for determhdng the stability derivative due to steady rolling Crfl C~~ and CZPfor isolated reotanguk vertioal tail.%
Dcrivntivea baeed on vertical-tail parameters b,S, and angle pb/V; prinoipal body-axea system with origin at leading edge of root motion.
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detaining the stability derivative due to constant lateral acceleration Cz~ for isolated rectangular verthml tnih.

vertioal-tail parametem b, S, and angle Ob/~; principal body-axex system with origin at leading edge of root seotion.
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FIGURE 15.—Comparieona of mm- and complekwmd-plate solutione for the side-force and yawing-
moment derivative due to several lateral motions for half-delta vertioal tails. Derivatives
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FIGURE 15.—Ckmoluded.
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